cos⁻¹(-11/(√22×√17))

asked by guest
on Nov 13, 2024 at 11:16 pm



You asked:

Evaluate the expression: arccos(112217)\arccos\left( \frac{-11}{\sqrt{22} \cdot \sqrt{17}} \right)

MathBot Answer:

arccos(112217)=arccos(37434)2.1758381300105824946858975278699\arccos\left( \frac{-11}{\sqrt{22} \cdot \sqrt{17}} \right) = \arccos{\left(- \frac{\sqrt{374}}{34} \right)} \approx 2.1758381300105824946858975278699


arccos(112217)=arccos(1112217)=arccos(111374)=arccos(134374)\begin{aligned}\arccos\left( \frac{-11}{\sqrt{22} \cdot \sqrt{17}} \right)&=\arccos{\left(-11 \cdot \frac{1}{\sqrt{22} \cdot \sqrt{17}} \right)}\\&=\arccos{\left(-11 \cdot \frac{1}{\sqrt{374}} \right)}\\&=\arccos{\left(- \frac{1}{34} \cdot \sqrt{374} \right)}\end{aligned}