cos⁻¹(-11/(√22×√17))
You asked:
Evaluate the expression: \(\arccos\left( \frac{-11}{\sqrt{22} \cdot \sqrt{17}} \right)\)
MathBot Answer:
\[\arccos\left( \frac{-11}{\sqrt{22} \cdot \sqrt{17}} \right) = \arccos{\left(- \frac{\sqrt{374}}{34} \right)} \approx 2.1758381300105824946858975278699\]
\[\begin{aligned}\arccos\left( \frac{-11}{\sqrt{22} \cdot \sqrt{17}} \right)& = \arccos{\left(-11 \cdot \frac{1}{\sqrt{22} \cdot \sqrt{17}} \right)}\\& = \arccos{\left(-11 \cdot \frac{1}{\sqrt{374}} \right)}\\& = \arccos{\left(- \frac{1}{34} \cdot \sqrt{374} \right)}\end{aligned}\]