solve 9x^4 -355.86x^2 + 3529.35 = 0
You asked:
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= - \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} - \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} i \sin{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} \approx -4.4481894 -0.12801872 i\\x &= - \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} + \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} i \sin{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} \approx -4.4481894 + 0.12801872 i\\x &= \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} - \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} i \sin{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} \approx 4.4481894 -0.12801872 i\\x &= \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} \cos{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} + \frac{\sqrt{2} \cdot 5^{\frac{3}{4}} \cdot \sqrt[4]{7843} i \sin{\left(\frac{\arctan{\left(\frac{\sqrt{12971}}{1977} \right)}}{2} \right)}}{10} \approx 4.4481894 + 0.12801872 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).