5th root of -32 raise to the power of -4
You asked:
Evaluate the expression: \(\sqrt[5]{-{32}^{-4}}\)
MathBot Answer:
\[\sqrt[5]{-{32}^{-4}} = \frac{\sqrt[5]{-1}}{16}\]
\[\begin{aligned}\sqrt[5]{-{32}^{-4}}& = \sqrt[5]{- \frac{1}{32^{4}}}\\& = \sqrt[5]{\frac{-1}{1048576}}\\& = \sqrt[5]{- \frac{1}{1048576}}\\& = \frac{1}{16} \cdot \sqrt[5]{-1}\end{aligned}\]