1/x * sen^2 x + ln * 2 sen x cos x

asked by guest
on Nov 25, 2024 at 10:44 am



You asked:

Evaluate the expression: \(\frac{1}{x} \cdot {\sin\left( x \right)}^{2} + l n \cdot 2 \cdot \sin\left( x \right) \cdot \cos\left( x \right)\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{1}{x} \cdot {\sin\left( x \right)}^{2} + l n \cdot 2 \cdot \sin\left( x \right) \cdot \cos\left( x \right) = 2 l n \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\sin^{2}{\left(x \right)}}{x} \)


Factored

\[\frac{1}{x} \cdot {\sin\left( x \right)}^{2} + l n \cdot 2 \cdot \sin\left( x \right) \cdot \cos\left( x \right) = \frac{\left(2 l n x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{x}\]