1/x * sen^2 x + ln * 2 sen x cos x

asked by guest
on Nov 25, 2024 at 10:44 am



You asked:

Evaluate the expression: 1xsin(x)2+ln2sin(x)cos(x)\frac{1}{x} {\sin\left( x \right)}^{2} + l n \cdot 2 \sin\left( x \right) \cos\left( x \right)

MathBot Answer:

Evaluated



1xsin(x)2+ln2sin(x)cos(x)=2lnsin(x)cos(x)+sin2(x)x\displaystyle \frac{1}{x} {\sin\left( x \right)}^{2} + l n \cdot 2 \sin\left( x \right) \cos\left( x \right) = 2 l n \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\sin^{2}{\left(x \right)}}{x}


Factored

1xsin(x)2+ln2sin(x)cos(x)=(2lnxcos(x)+sin(x))sin(x)x\frac{1}{x} {\sin\left( x \right)}^{2} + l n \cdot 2 \sin\left( x \right) \cos\left( x \right) = \frac{\left(2 l n x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{x}