10 log 10/10^-12
You asked:
Evaluate the expression: \(\frac{10 \log\left( 10 \right)}{{10}^{-12}}\)
MathBot Answer:
\[\frac{10 \log\left( 10 \right)}{{10}^{-12}} = 10000000000000 \log{\left(10 \right)} \approx 23025850929940.45684017991454684364207601101489\]
\[\begin{aligned}\frac{10 \log\left( 10 \right)}{{10}^{-12}}& = 10 \cdot \log{\left(10 \right)} \cdot \frac{1}{\frac{1}{10^{12}}}\\& = 10 \cdot \log{\left(10 \right)} \cdot \frac{1}{\frac{1}{1000000000000}}\\& = 10 \cdot 1000000000000 \cdot \log{\left(10 \right)}\\& = 10000000000000 \cdot \log{\left(10 \right)}\end{aligned}\]