integral from 0 to a Power[\(40)-Divide[Power[a,2],2]+Divide[a,2]x\(41),2] dx

asked by guest
on Nov 16, 2024 at 5:50 am



You asked:

Evaluate the integral: \(\int_{0}^{a \cdot {\left( -\left( \frac{{a}^{2}}{2} \right) + \frac{a}{2} \cdot x \right)}^{2}}{1}dx\)

MathBot Answer:

Evaluated



\(\displaystyle \int_{0}^{a \cdot {\left( -\left( \frac{{a}^{2}}{2} \right) + \frac{a}{2} \cdot x \right)}^{2}}{1}dx = a \left(- \frac{a^{2}}{2} + \frac{a x}{2}\right)^{2} \)


Expanded

\[\int_{0}^{a \cdot {\left( -\left( \frac{{a}^{2}}{2} \right) + \frac{a}{2} \cdot x \right)}^{2}}{1}dx = \int\limits_{0}^{\frac{a^{5}}{4} - \frac{a^{4} x}{2} + \frac{a^{3} x^{2}}{4}} 1\, dx\]