exp(0.9)/(273)(8.62*10^-5)

asked by guest
on Nov 18, 2024 at 7:20 am



You asked:

Evaluate the expression: e0.92738.62105\frac{{e}^{0.9}}{273 \cdot 8.62 \cdot {10}^{-5}}

MathBot Answer:

e0.92738.62105=5000000e910117663104.51896990374840280292558253667129\frac{{e}^{0.9}}{273 \cdot 8.62 \cdot {10}^{-5}} = \frac{5000000 e^{\frac{9}{10}}}{117663} \approx 104.51896990374840280292558253667129


e0.92738.62105=e9101273(8+62100)1105=e9101273(8+3150)1105=e9101273431501105=e9101273431501100000=e9101117663501100000=e91011176635000000=5000000117663e910\begin{aligned}\frac{{e}^{0.9}}{273 \cdot 8.62 \cdot {10}^{-5}}&=e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \left(8 + \frac{62}{100}\right) \cdot \frac{1}{10^{5}}}\\&=e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \left(8 + \frac{31}{50}\right) \cdot \frac{1}{10^{5}}}\\&=e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \frac{431}{50} \cdot \frac{1}{10^{5}}}\\&=e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \frac{431}{50} \cdot \frac{1}{100000}}\\&=e^{\frac{9}{10}} \cdot \frac{1}{\frac{117663}{50} \cdot \frac{1}{100000}}\\&=e^{\frac{9}{10}} \cdot \frac{1}{\frac{117663}{5000000}}\\&=\frac{5000000}{117663} \cdot e^{\frac{9}{10}}\end{aligned}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.