exp(0.9)/(273)(8.62*10^-5)

asked by guest
on Nov 18, 2024 at 7:20 am



You asked:

Evaluate the expression: \(\frac{{e}^{0.9}}{273 \cdot 8.62 \cdot {10}^{-5}}\)

MathBot Answer:

\[\frac{{e}^{0.9}}{273 \cdot 8.62 \cdot {10}^{-5}} = \frac{5000000 e^{\frac{9}{10}}}{117663} \approx 104.51896990374840280292558253667129\]


\[\begin{aligned}\frac{{e}^{0.9}}{273 \cdot 8.62 \cdot {10}^{-5}}& = e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \left(8 + \frac{62}{100}\right) \cdot \frac{1}{10^{5}}}\\& = e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \left(8 + \frac{31}{50}\right) \cdot \frac{1}{10^{5}}}\\& = e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \frac{431}{50} \cdot \frac{1}{10^{5}}}\\& = e^{\frac{9}{10}} \cdot \frac{1}{273 \cdot \frac{431}{50} \cdot \frac{1}{100000}}\\& = e^{\frac{9}{10}} \cdot \frac{1}{\frac{117663}{50} \cdot \frac{1}{100000}}\\& = e^{\frac{9}{10}} \cdot \frac{1}{\frac{117663}{5000000}}\\& = \frac{5000000}{117663} \cdot e^{\frac{9}{10}}\end{aligned}\]


\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).