Solve cos 3x = 0.87 for 0 ≤ x ≤ 120

asked by guest
on Jan 24, 2025 at 9:25 am



MathBot Answer:

\(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{2 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{4 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 2 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{8 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{10 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 4 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{14 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{16 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 6 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{20 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{22 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 8 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{26 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{28 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 10 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{32 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{34 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 12 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{38 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{40 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 14 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{44 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{46 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 16 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{50 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{52 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 18 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{56 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{58 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 20 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{62 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{64 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 22 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{68 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{70 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 24 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{74 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{76 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 26 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{80 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{82 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 28 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{86 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{88 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 30 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{92 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{94 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 32 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{98 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{100 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 34 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{104 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{106 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 36 \pi\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{110 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{112 \pi}{3}\), \(x = - \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 38 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{2 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{4 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 2 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{8 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{10 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 4 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{14 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{16 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 6 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{20 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{22 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 8 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{26 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{28 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 10 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{32 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{34 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 12 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{38 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{40 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 14 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{44 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{46 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 16 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{50 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{52 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 18 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{56 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{58 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 20 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{62 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{64 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 22 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{68 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{70 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 24 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{74 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{76 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 26 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{80 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{82 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 28 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{86 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{88 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 30 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{92 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{94 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 32 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{98 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{100 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 34 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{104 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{106 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 36 \pi\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{110 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + \frac{112 \pi}{3}\), \(x = \frac{\arctan{\left(\frac{\sqrt{2431}}{87} \right)}}{3} + 38 \pi\) are the solutions to the equation \(\cos\left( 3 x \right) = 0.87\) that satisfy the inequality \(0 \le x \le 120\).