\log _(3)(\root(3)(3)*27)/(81)

asked by guest
on Nov 19, 2024 at 3:44 pm



You asked:

Evaluate the expression: \(\log_{3}\left( \frac{\sqrt[3]{3} \cdot 27}{81} \right)\)

MathBot Answer:

\[\log_{3}\left( \frac{\sqrt[3]{3} \cdot 27}{81} \right) = \frac{\log{\left(\frac{\sqrt[3]{3}}{3} \right)}}{\log{\left(3 \right)}} \approx -0.66666666666666666666666666666667\]


\[\begin{aligned}\log_{3}\left( \frac{\sqrt[3]{3} \cdot 27}{81} \right)& = \log{\left(\sqrt[3]{3} \cdot \frac{27}{81} \right)}\\& = \log{\left(\sqrt[3]{3} \cdot \frac{1}{3} \right)}\\& = \log{\left(\frac{1}{3} \cdot \sqrt[3]{3} \right)}\\& = \frac{1}{\log{\left(3 \right)}} \cdot \log{\left(\frac{1}{3} \cdot \sqrt[3]{3} \right)}\end{aligned}\]