(-0.08^1.85)999.30

asked by guest
on Nov 18, 2024 at 2:27 pm



You asked:

Evaluate the expression: \(-{0.08}^{1.85} \cdot 999.30\)

MathBot Answer:

\[-{0.08}^{1.85} \cdot 999.30 = - \frac{9993 \cdot 2^{\frac{17}{20}} \cdot 5^{\frac{3}{10}}}{3125} \approx -9.34140848158332178006936093340362\]


\[\begin{aligned}-{0.08}^{1.85} \cdot 999.30& = - \cdot \left(\frac{8}{100}\right)^{1 + \frac{85}{100}} \cdot \left(999 + \frac{3}{10}\right)\\& = - \cdot \left(\frac{2}{25}\right)^{1 + \frac{85}{100}} \cdot \left(999 + \frac{3}{10}\right)\\& = - \cdot \left(\frac{2}{25}\right)^{1 + \frac{17}{20}} \cdot \left(999 + \frac{3}{10}\right)\\& = - \cdot \left(\frac{2}{25}\right)^{\frac{37}{20}} \cdot \left(999 + \frac{3}{10}\right)\\& = - \cdot \frac{2}{625} \cdot 2^{\frac{17}{20}} \cdot 5^{\frac{3}{10}} \cdot \left(999 + \frac{3}{10}\right)\\& = - \cdot \frac{2}{625} \cdot 2^{\frac{17}{20}} \cdot 5^{\frac{3}{10}} \cdot \frac{9993}{10}\\& = - \frac{2}{625} \cdot 2^{\frac{17}{20}} \cdot 5^{\frac{3}{10}} \cdot \frac{9993}{10}\\& = - \frac{9993}{3125} \cdot 2^{\frac{17}{20}} \cdot 5^{\frac{3}{10}}\end{aligned}\]