\sum _{n=0}^{\infty }\:\left(-1\right)^{n+1}\frac{1}{\left(2n-1\right)^2}
asked by guest on Nov 15, 2024 at 5:55 pm
You asked:
MathBot Answer:
∑n=0∞(−1)n+1(2n−1)2=−1+iLi2(−i)2−iLi2(i)2\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n + 1}}{\left(2 n - 1\right)^{2}} = -1 + \frac{i \operatorname{Li}_{2}\left(- i\right)}{2} - \frac{i \operatorname{Li}_{2}\left(i\right)}{2}n=0∑∞(2n−1)2(−1)n+1=−1+2iLi2(−i)−2iLi2(i)