\sum _{n=0}^{\infty }\:\left(-1\right)^{n+1}\frac{1}{\left(2n-1\right)^2}
asked by guest
on Nov 15, 2024 at 5:55 pm
You asked:
Evaluate the expression:
∑n=0∞(−1)n+1⋅(2n−1)21
MathBot Answer:
n=0∑∞(2n−1)2(−1)n+1=−1+2iLi2(−i)−2iLi2(i)
n=0∑∞(2n−1)2(−1)n+1=n=0∑∞−4n2−4n+1(−1)n=−n=0∑∞4n2−4n+1(−1)n using the formula n=k∑∞Cf(n)=Cn=k∑∞f(n)=−n=0∑∞(2n−1)2(−1)n=−n=0∑∞4n2−4n+1(−1)n=−1+2iLi2(−i)−2iLi2(i)
i is the imaginary unit, defined as i2=−1.