\sum _{n=0}^{\infty }\:\left(-1\right)^{n+1}\frac{1}{\left(2n-1\right)^2}

asked by guest
on Nov 15, 2024 at 5:55 pm



You asked:

Evaluate the expression: n=0(1)n+11(2n1)2\sum_{n = 0}^{\infty} {{\left( -1 \right)}^{n + 1} \cdot \frac{1}{{\left( 2 n - 1 \right)}^{2}}}

MathBot Answer:

n=0(1)n+1(2n1)2=1+iLi2(i)2iLi2(i)2\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n + 1}}{\left(2 n - 1\right)^{2}} = -1 + \frac{i \operatorname{Li}_{2}\left(- i\right)}{2} - \frac{i \operatorname{Li}_{2}\left(i\right)}{2}


n=0(1)n+1(2n1)2=n=0(1)n4n24n+1=n=0(1)n4n24n+1   using the formula n=kCf(n)=Cn=kf(n)=n=0(1)n(2n1)2=n=0(1)n4n24n+1=1+iLi2(i)2iLi2(i)2\begin{aligned}\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n + 1}}{\left(2 n - 1\right)^{2}} &= \sum_{n=0}^{\infty} -\frac{\left(-1\right)^{n}}{4 n^{2} - 4 n + 1}\\&= - \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{4 n^{2} - 4 n + 1} \ \ \ \small{\color{grey}\text{using the formula } \sum_{n=k}^{\infty} C f{\left(n \right)} = C \sum_{n=k}^{\infty} f{\left(n \right)}}\\&= - \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{\left(2 n - 1\right)^{2}}\\&= - \sum_{n=0}^{\infty} \frac{\left(-1\right)^{n}}{4 n^{2} - 4 n + 1}\\&= -1 + \frac{i \operatorname{Li}_{2}\left(- i\right)}{2} - \frac{i \operatorname{Li}_{2}\left(i\right)}{2}\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.