5501-789=

asked by guest
on Apr 07, 2025 at 6:38 am



You asked:

Evaluate the expression: 55017895501 - 789

MathBot Answer:

5501789=4712 5501 - 789=4712


5451409111007894712 \begin{aligned} \overset{\mathtt{{\scriptscriptstyle 4}}}{\cancel{\mathtt{5}}}\overset{\mathtt{{\scriptscriptstyle 14}}}{\cancel{\mathtt{5}}}\overset{\mathtt{{\scriptscriptstyle 9}}}{\cancel{\mathtt{0}}}\overset{\mathtt{{\scriptscriptstyle 11}}}{\cancel{\mathtt{1}}}\\ \mathtt{-\phantom{0}}\phantom{0}\mathtt{7}\mathtt{8}\mathtt{9}\\ \hline \mathtt{4}\mathtt{7}\mathtt{1}\mathtt{2} \end{aligned}

Borrow 10210^{2}, resulting in 44 in the 10210^{2} place, and 1010 in the 10110^{1} place.

Borrow 10110^{1}, resulting in 99 in the 10110^{1} place, and 1111 in the 10010^{0} place.

22 is the digit in the 10010^{0} place. 11×1009×100=2×10011 \times 10^{0} - 9 \times 10^{0} = 2 \times 10^{0}.

11 is the digit in the 10110^{1} place. 9×1018×101=1×1019 \times 10^{1} - 8 \times 10^{1} = 1 \times 10^{1}.

Borrow 10310^{3}, resulting in 44 in the 10310^{3} place, and 1414 in the 10210^{2} place.

77 is the digit in the 10210^{2} place. 14×1027×102=7×10214 \times 10^{2} - 7 \times 10^{2} = 7 \times 10^{2}.

44 is the digit in the 10310^{3} place. 4×1030×103=4×1034 \times 10^{3} - 0 \times 10^{3} = 4 \times 10^{3}.