cos(x)=-cos(60)
asked by guest on Apr 03, 2025 at 3:59 am
You asked:
MathBot Answer:
The real solutions are: x={−60+21π+2πn | n∈Z}≈{6.2831853n+5.9734457 | n∈Z}x={60−19π+2πn | n∈Z}≈{6.2831853n+0.30973959 | n∈Z}\begin{aligned}x &= \left\{-60 + 21 \pi + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 5.9734457\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{60 - 19 \pi + 2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.30973959\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}xx={−60+21π+2πn∣n∈Z}≈{6.2831853n+5.9734457∣n∈Z}={60−19π+2πn∣n∈Z}≈{6.2831853n+0.30973959∣n∈Z}