(8.25 × 10^31)/ $\pi$

asked by guest
on Jan 10, 2025 at 12:08 pm



You asked:

Evaluate the expression: \(\frac{8.25 \cdot {10}^{31}}{\pi}\)

MathBot Answer:

\[\frac{8.25 \cdot {10}^{31}}{\pi} = \frac{82500000000000000000000000000000}{\pi} \approx 26260565610162730401865820956464.86973568584154717531404336511177\]


\[\begin{aligned}\frac{8.25 \cdot {10}^{31}}{\pi}& = \left(8 + \frac{25}{100}\right) \cdot 10^{31} \cdot \frac{1}{\pi}\\& = \left(8 + \frac{1}{4}\right) \cdot 10^{31} \cdot \frac{1}{\pi}\\& = \frac{33}{4} \cdot 10^{31} \cdot \frac{1}{\pi}\\& = \frac{33}{4} \cdot 10000000000000000000000000000000 \cdot \frac{1}{\pi}\\& = 82500000000000000000000000000000 \cdot \frac{1}{\pi}\end{aligned}\]