2x + 3y = 21

x - y = 3

find x and y

asked by guest
on Nov 15, 2024 at 6:51 am



You asked:

Given \( 2 x + 3 y = 21 \), \( x - y = 3 \), evaluate \( x \), \( y \).

MathBot Answer:

The system of linear equations has exactly one solution.

The substitutions are \( x = 6 \), \( y = 3 \).

\[x = 6\]

\[y = 3\]


Solve \(2 x + 3 y = 21\) for \(x\). \[x = \frac{21}{2} - \frac{3 y}{2}\]

Substitute \(\frac{21}{2} - \frac{3 y}{2}\) for \(x\) in \(x - y = 3\) and simplify. $$\begin{aligned}x - y &= 3 \\ \left(\frac{21}{2} - \frac{3 y}{2}\right) - y &= 3 \\ y &= 3 \end{aligned}$$

Use substitution of the numerical value of \(y\) to get the values of \(x\). $$\begin{aligned}x &= \frac{21}{2} - \frac{3 y}{2} \\ x &= \frac{21}{2} - \frac{3 \cdot 3}{2} \\ x &= 6\end{aligned}$$