find dy/dx if y= x3x^{3} ln(2x+5)

asked by guest
on Jan 23, 2025 at 10:46 am



You asked:

Calculate the value of ddx[y(x)]\frac{d}{dx}\left[y\left( x \right)\right] when y=x3ln(2x+5)y = {x}^{3} \ln\left( 2 x + 5 \right).

MathBot Answer:

ddxy(x)=2x32x+5+3x2log(2x+5)\frac{d}{d x} y{\left(x \right)} = \frac{2 x^{3}}{2 x + 5} + 3 x^{2} \log{\left(2 x + 5 \right)}