find dy/dx if y= $x^{3}$ ln(2x+5)
You asked:
Calculate the value of \(\frac{d}{dx}\left[y\left( x \right)\right]\) when \(y = {x}^{3} \ln\left( 2 x + 5 \right)\).
MathBot Answer:
\[\frac{d}{d x} y{\left(x \right)} = \frac{2 x^{3}}{2 x + 5} + 3 x^{2} \log{\left(2 x + 5 \right)}\]