4,2⋅10−7m

asked by guest
on Jan 15, 2025 at 2:29 am



MathBot Answer:

The sum of \(4\) and \(2 \cdot 10 - 7 m\) is:

\[\begin{aligned}&=\left(4\right) + \left(2 \cdot 10 - 7 m\right) \\\\ &= \left(-1\right) 7 m + 4 + 20 \\\\ &= 24 - 7 m \\\\\end{aligned}\]


The difference of \(4\) and \(2 \cdot 10 - 7 m\) is:

\[\begin{aligned}&=\left(4\right) - \left(2 \cdot 10 - 7 m\right) \\\\ &= 7 m - 16 \\\\\end{aligned}\]


The product of \(4\) and \(2 \cdot 10 - 7 m\) is:

\[\begin{aligned}&=\left(4\right) \cdot \left(2 \cdot 10 - 7 m\right) \\\\ &= \left(-4\right) 7 m + 80 \\\\ &= 80 - 28 m \\\\\end{aligned}\]


The quotient of \(4\) and \(2 \cdot 10 - 7 m\) is:

\[\begin{aligned}&= \frac{\left(4\right)}{\left(2 \cdot 10 - 7 m\right)} \\\\ &= \frac{4}{- 7 m + 2 \cdot 10} \\\\ &= - \frac{4}{7 m - 20} \\\\\end{aligned}\]