integrate 8 cos t cos 2t
asked by guest on Jan 29, 2025 at 2:02 am
You asked:
MathBot Answer:
∫8cos(t)cos(2t)dt=−8cos(2t)sin(t)3+16cos(t)sin(2t)3+C\int{8 \cos\left( t \right) \cos\left( 2 t \right)}dt = - \frac{8 \cos{\left(2 t \right)} \sin{\left(t \right)}}{3} + \frac{16 \cos{\left(t \right)} \sin{\left(2 t \right)}}{3} + C∫8cos(t)cos(2t)dt=−38cos(2t)sin(t)+316cos(t)sin(2t)+C