1040=\frac{120}{a}+\frac{120}{a^{2}}+\frac{120}{a^{2}\cdot a}+\frac{1120}{a^{2}\cdot a^{2}}

asked by guest
on Jan 14, 2025 at 2:36 pm



You asked:

Solve the equation 1040=120a+120a2+120a2a+1120a2a21040 = \frac{120}{a} + \frac{120}{{a}^{2}} + \frac{120}{{a}^{2} a} + \frac{1120}{{a}^{2} {a}^{2}} for the variable aa.

MathBot Answer:


The complex solutions are: {3104+145932448583517997824+3009094008091619804163+21710816+2583517997824+3009094008091619804163+2583517997824+3009094008091619804163+2175408+145932448583517997824+3009094008091619804163+17187562432145932448583517997824+3009094008091619804163+21710816+2583517997824+3009094008091619804163,145932448583517997824+3009094008091619804163+21710816+2583517997824+3009094008091619804163+3104i17187562432145932448583517997824+3009094008091619804163+21710816+2583517997824+30090940080916198041632583517997824+3009094008091619804163+2175408+145932448583517997824+3009094008091619804163,145932448583517997824+3009094008091619804163+21710816+2583517997824+3009094008091619804163+3104+i17187562432145932448583517997824+3009094008091619804163+21710816+2583517997824+30090940080916198041632583517997824+3009094008091619804163+2175408+145932448583517997824+3009094008091619804163,2583517997824+3009094008091619804163+2175408+145932448583517997824+3009094008091619804163+17187562432145932448583517997824+3009094008091619804163+21710816+2583517997824+3009094008091619804163+3104+145932448583517997824+3009094008091619804163+21710816+2583517997824+3009094008091619804163}{0}\left\{\frac{3}{104} + \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \sqrt{\left|{- 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}} + \frac{217}{5408} + \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{17187}{562432 \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}}}\right|}, - \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{3}{104} - i \sqrt{\left|{- \frac{17187}{562432 \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}} - 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}} + \frac{217}{5408} + \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}}\right|}, - \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{3}{104} + i \sqrt{\left|{- \frac{17187}{562432 \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}} - 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}} + \frac{217}{5408} + \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}}\right|}, - \sqrt{\left|{- 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}} + \frac{217}{5408} + \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{17187}{562432 \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}}}\right|} + \frac{3}{104} + \sqrt{- \frac{1459}{32448 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}} + \frac{217}{10816} + 2 \sqrt[3]{- \frac{5835}{17997824} + \frac{\sqrt{300909400809}}{161980416}}}\right\} \setminus \left\{0\right\}


ii is the imaginary unit, defined as i2=1i^2 = -1.