\(\lim _{x\rightarrow \infty }\frac{x^{2}+x^{4}\sin \left(\frac{1}{x^{2}}\right)+1}{3x^{2}\cos \left(\frac{1}{x}\right)2x^{2}}\)
You asked:
Evaluate the expression: \(\lim_{x \to \infty}{\frac{{x}^{2} + {x}^{4} \cdot \sin\left( \frac{1}{{x}^{2}} \right) + 1}{3 \cdot {x}^{2} \cdot \cos\left( \frac{1}{x} \right) \cdot 2 \cdot {x}^{2}}}\)
MathBot Answer:
\[\lim_{x \to \infty}{\frac{{x}^{2} + {x}^{4} \cdot \sin\left( \frac{1}{{x}^{2}} \right) + 1}{3 \cdot {x}^{2} \cdot \cos\left( \frac{1}{x} \right) \cdot 2 \cdot {x}^{2}}} = 0\]