simplify: 14/(3x-21)+[(x+4)/((2x^2-6x-56)/(2x+3))]

asked by guest
on Apr 13, 2025 at 11:15 am



You asked:

Simplify the expression: 143x21+x+42x26x562x+3\frac{14}{3 x - 21} + \frac{x + 4}{\frac{2 {x}^{2} - 6 x - 56}{2 x + 3}}

MathBot Answer:

Simplified:

143x21+x+42x26x562x+3=x+376x7 \frac{14}{3 x - 21} + \frac{x + 4}{\frac{2 {x}^{2} - 6 x - 56}{2 x + 3}} = \frac{x + \frac{37}{6}}{x - 7}


x+42x26x562x+3+143x21=(2x+3)(x+4)2x26x56+143x21=143x21+2x+32x14=14(2x14)3x212x14+(2x+3)(3x21)2x143x21=x+376x7\begin{aligned}\frac{x + 4}{\frac{2 x^{2} - 6 x - 56}{2 x + 3}} + \frac{14}{3 x - 21}&=\frac{\left(2 x + 3\right) \left(x + 4\right)}{2 x^{2} - 6 x - 56} + \frac{14}{3 x - 21}\\&=\frac{14}{3 x - 21} + \frac{2 x + 3}{2 x - 14}\\&=\frac{\frac{14 \cdot \left(2 x - 14\right)}{3 x - 21}}{2 x - 14} + \frac{\frac{\left(2 x + 3\right) \left(3 x - 21\right)}{2 x - 14}}{3 x - 21}\\&=\frac{x + \frac{37}{6}}{x - 7}\end{aligned}


Expanded:

143x21+x+42x26x562x+3=x2x22x+36x2x+3562x+3+42x22x+36x2x+3562x+3+143x21 \frac{14}{3 x - 21} + \frac{x + 4}{\frac{2 {x}^{2} - 6 x - 56}{2 x + 3}} = \frac{x}{\frac{2 x^{2}}{2 x + 3} - \frac{6 x}{2 x + 3} - \frac{56}{2 x + 3}} + \frac{4}{\frac{2 x^{2}}{2 x + 3} - \frac{6 x}{2 x + 3} - \frac{56}{2 x + 3}} + \frac{14}{3 x - 21}


Factored:

143x21+x+42x26x562x+3=6x+376(x7) \frac{14}{3 x - 21} + \frac{x + 4}{\frac{2 {x}^{2} - 6 x - 56}{2 x + 3}} = \frac{6 x + 37}{6 \left(x - 7\right)}