3x^3+6x^2-9x+63=0
You asked:
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}x &= - \frac{2}{3} - \frac{13}{3 \sqrt[3]{\frac{637}{2} + \frac{117 \sqrt{29}}{2}}} - \frac{\sqrt[3]{\frac{637}{2} + \frac{117 \sqrt{29}}{2}}}{3} \approx -4.0340809\\x &= - \frac{2}{3} + \frac{13}{6 \sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}} + \frac{\sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}}{6} + i \left(- \frac{13 \sqrt{3}}{6 \sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}} + \frac{\sqrt{3} \sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}}{6}\right) \approx 1.0170404 + 2.0423701 i\\x &= - \frac{2}{3} + \frac{13}{6 \sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}} + \frac{\sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}}{6} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}}{6} + \frac{13 \sqrt{3}}{6 \sqrt[3]{\frac{117 \sqrt{29}}{2} + \frac{637}{2}}}\right) \approx 1.0170404 -2.0423701 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).