simplify $x^{m+2n}$ + $x^{3m-8n}$ / $x^{5m-6n}$
You asked:
Simplify the expression: \({x}^{m + 2 n} + \frac{{x}^{3 m - 8 n}}{{x}^{5 m - 6 n}}\)
MathBot Answer:
Simplified:
\[ {x}^{m + 2 n} + \frac{{x}^{3 m - 8 n}}{{x}^{5 m - 6 n}} = x^{- 2 m - 2 n} + x^{m + 2 n} \]
Expanded:
\[ {x}^{m + 2 n} + \frac{{x}^{3 m - 8 n}}{{x}^{5 m - 6 n}} = x^{2 n} x^{m} + x^{- 2 m} x^{- 2 n} \]
Factored:
\[ {x}^{m + 2 n} + \frac{{x}^{3 m - 8 n}}{{x}^{5 m - 6 n}} = x^{2 n} x^{m} + x^{- 2 m} x^{- 2 n} \]