(sin theta - cos theta + 1) / (sin theta +cos theta -1) =
You asked:
MathBot Answer:
Evaluated
\(\displaystyle \frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1} = \frac{\sin{\left(θ \right)} - \cos{\left(θ \right)} + 1}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1} \)
Expanded
\[\frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1} = \frac{\sin{\left(θ \right)}}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1} - \frac{\cos{\left(θ \right)}}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1} + \frac{1}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}\]
Factored
\[\frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1} = - \frac{- \sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}\]