(sin theta - cos theta + 1) / (sin theta +cos theta -1) =

asked by guest
on Nov 24, 2024 at 8:42 pm



You asked:

Evaluate the expression: sin(θ)cos(θ)+1sin(θ)+cos(θ)1\frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1}

MathBot Answer:

Evaluated



sin(θ)cos(θ)+1sin(θ)+cos(θ)1=sin(θ)cos(θ)+1sin(θ)+cos(θ)1\displaystyle \frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1} = \frac{\sin{\left(θ \right)} - \cos{\left(θ \right)} + 1}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}


Expanded

sin(θ)cos(θ)+1sin(θ)+cos(θ)1=sin(θ)sin(θ)+cos(θ)1cos(θ)sin(θ)+cos(θ)1+1sin(θ)+cos(θ)1\frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1} = \frac{\sin{\left(θ \right)}}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1} - \frac{\cos{\left(θ \right)}}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1} + \frac{1}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}


Factored

sin(θ)cos(θ)+1sin(θ)+cos(θ)1=sin(θ)+cos(θ)1sin(θ)+cos(θ)1\frac{\sin\left( θ \right) - \cos\left( θ \right) + 1}{\sin\left( θ \right) + \cos\left( θ \right) - 1} = - \frac{- \sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}{\sin{\left(θ \right)} + \cos{\left(θ \right)} - 1}