find the roots of y= $x^{3}$+3

asked by guest
on Dec 28, 2024 at 7:16 am



You asked:

Find the zeros of \(y = {x}^{3} + 3\)

MathBot Answer:

The real zeros of \(y = x^{3} + 3\) are: $$\begin{align*}x &= - \sqrt[3]{3}\end{align*}$$


The complex zeros of \(y = x^{3} + 3\) are: $$\begin{align*}x &= \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2} \approx 0.721124785153704 - 1.24902476648341 i\\x &= \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2} \approx 0.721124785153704 + 1.24902476648341 i\end{align*}$$