find the roots of y= x3x^{3}+3

asked by guest
on Dec 28, 2024 at 7:16 am



You asked:

Find the zeros of y=x3+3y = {x}^{3} + 3

MathBot Answer:

The real zeros of y=x3+3y = x^{3} + 3 are: x=33\begin{align*}x &= - \sqrt[3]{3}\end{align*}


The complex zeros of y=x3+3y = x^{3} + 3 are: x=332356i20.7211247851537041.24902476648341ix=332+356i20.721124785153704+1.24902476648341i\begin{align*}x &= \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2} \approx 0.721124785153704 - 1.24902476648341 i\\x &= \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2} \approx 0.721124785153704 + 1.24902476648341 i\end{align*}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls