find the roots of y= $x^{3}$+3
You asked:
Find the zeros of \(y = {x}^{3} + 3\)
MathBot Answer:
The real zeros of \(y = x^{3} + 3\) are: $$\begin{align*}x &= - \sqrt[3]{3}\end{align*}$$
The complex zeros of \(y = x^{3} + 3\) are: $$\begin{align*}x &= \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2} \approx 0.721124785153704 - 1.24902476648341 i\\x &= \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2} \approx 0.721124785153704 + 1.24902476648341 i\end{align*}$$