(ij) * cos[i * log((a + ib)/(a - ib))] = (a ^ 2 - b ^ 2)/(a ^ 2 + b ^ 2)
You asked:
Investigate the equation: \(i j \cdot \cos\left( i \cdot \log\left( \frac{a + i b}{a - i b} \right) \right) = \frac{{a}^{2} - {b}^{2}}{{a}^{2} + {b}^{2}}\).
(ij) * cos[i * log((a + ib)/(a - ib))] = (a ^ 2 - b ^ 2)/(a ^ 2 + b ^ 2)
You asked: