14xe^{\left(x-2\right)}-12e^{\left(x-2\right)}-7x^{3}+20x^{2}-26x+12

asked by guest
on Jan 22, 2025 at 11:04 am



You asked:

Evaluate the expression: 14xex212ex27x3+20x226x+1214 x {e}^{x - 2} - 12 {e}^{x - 2} - 7 {x}^{3} + 20 {x}^{2} - 26 x + 12

MathBot Answer:

Evaluated



14xex212ex27x3+20x226x+12=7x3+20x2+14xex226x12ex2+12\displaystyle 14 x {e}^{x - 2} - 12 {e}^{x - 2} - 7 {x}^{3} + 20 {x}^{2} - 26 x + 12 = - 7 x^{3} + 20 x^{2} + 14 x e^{x - 2} - 26 x - 12 e^{x - 2} + 12


Expanded

14xex212ex27x3+20x226x+12=7x3+20x2+14xexe226x12exe2+1214 x {e}^{x - 2} - 12 {e}^{x - 2} - 7 {x}^{3} + 20 {x}^{2} - 26 x + 12 = - 7 x^{3} + 20 x^{2} + \frac{14 x e^{x}}{e^{2}} - 26 x - \frac{12 e^{x}}{e^{2}} + 12


Factored

14xex212ex27x3+20x226x+12=(7x6)(x22x2exe2+2)14 x {e}^{x - 2} - 12 {e}^{x - 2} - 7 {x}^{3} + 20 {x}^{2} - 26 x + 12 = - \left(7 x - 6\right) \left(x^{2} - 2 x - \frac{2 e^{x}}{e^{2}} + 2\right)


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.