c=0101.2c\sum_{c=0}^{10}{1.2^c}

asked by guest
on Mar 31, 2025 at 11:55 am



You asked:

Evaluate the expression: c=0101.2c\sum_{c = 0}^{10} {{1.2}^{c}}

MathBot Answer:

c=010(2110+1)c=3139689319765625\sum_{c=0}^{10} \left(2 \cdot \frac{1}{10} + 1\right)^{c} = \frac{313968931}{9765625}


c=010(2110+1)c=(1(2110+1)1+10)12110+1   by the identityn=0man=1am+11a=(313968931)(5)48828125=3139689319765625\begin{aligned}\sum_{c=0}^{10} \left(2 \cdot \frac{1}{10} + 1\right)^{c} &= \frac{\left(1 - \left(2 \cdot \frac{1}{10} + 1\right)^{1 + 10}\right)}{1 - 2 \cdot \frac{1}{10} + 1} \ \ \ \small{\color{grey}\text{by the identity} \sum_{n=0}^{m} a^n = \frac{1-a^{m+1}}{1-a}}\\&= \frac{\left(-313968931\right) \left(-5\right)}{48828125}\\&= \frac{313968931}{9765625}\end{aligned}