(A + 1 )( B + 1 )(C + 1 )=385 then find a + b + c
You asked:
Given \(\left(A + 1\right) \left(B + 1\right) \left(C + 1\right) = 385\) evaluate the expression \(a + b + c\).
MathBot Answer:
Assuming \(c\) and \(C\) are referring to the same variable.Assuming \(b\) and \(B\) are referring to the same variable.Assuming \(a\) and \(A\) are referring to the same variable.
\[a + b + c = - a b c - a b - a c - b c + 384\]
$$\begin{aligned}\left(a + 1\right) \left(b + 1\right) \left(c + 1\right) &= 385\\a b c + a b + a c + a + b c + b + c + 1 &= 385\\a + b + c&=- a b c - a b - a c - b c + 384\end{aligned}$$