\left[\frac{2\left(x-4\right)}{\left(x-1\right)\left(x-2\right)}\right]
You asked:
Evaluate the expression: \(\frac{2 \cdot \left(x - 4\right)}{\left(x - 1\right) \cdot \left(x - 2\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{2 \cdot \left(x - 4\right)}{\left(x - 1\right) \cdot \left(x - 2\right)} = \frac{2 \left(x - 4\right)}{\left(x - 2\right) \left(x - 1\right)} \)
Expanded
\[\frac{2 \cdot \left(x - 4\right)}{\left(x - 1\right) \cdot \left(x - 2\right)} = \frac{2 x}{x^{2} - 3 x + 2} - \frac{8}{x^{2} - 3 x + 2}\]