5/4e^4 + 5e^4/4
You asked:
Evaluate the expression: \(\frac{5}{4 {e}^{4}} + \frac{5 {e}^{4}}{4}\)
MathBot Answer:
\[\frac{5}{4 {e}^{4}} + \frac{5 {e}^{4}}{4} = \frac{5}{4 e^{4}} + \frac{5 e^{4}}{4} \approx 68.27058209004121657300497403016765\]
\[\begin{aligned}\frac{5}{4 {e}^{4}} + \frac{5 {e}^{4}}{4}& = 5 \cdot \frac{1}{4 \cdot e^{4}} + 5 \cdot e^{4} \cdot \frac{1}{4}\\& = \frac{5}{4} \cdot e^{-4} + 5 \cdot e^{4} \cdot \frac{1}{4}\\& = \frac{5}{4} \cdot e^{-4} + 5 \cdot \frac{1}{4} \cdot e^{4}\\& = \frac{5}{4} \cdot e^{-4} + \frac{5}{4} \cdot e^{4}\end{aligned}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).