maxima and minima for

f(x) = x^3-9x^2+24x+7

asked by guest
on Nov 23, 2024 at 8:44 pm



You asked:

Find the maximum and the minimum of f(x)=x39x2+24x+7f\left( x \right) = {x}^{3} - 9 {x}^{2} + 24 x + 7

MathBot Answer:

f(x)=x39x2+24x+7f(x)=x^{3} - 9 x^{2} + 24 x + 7 has a local maximum 2727 at x=2x = 2.


f(x)=x39x2+24x+7f(x)=x^{3} - 9 x^{2} + 24 x + 7 has no global maxima.


f(x)=x39x2+24x+7f(x)=x^{3} - 9 x^{2} + 24 x + 7 has a local minimum 2323 at x=4x = 4.


f(x)=x39x2+24x+7f(x)=x^{3} - 9 x^{2} + 24 x + 7 has no global minima.


To find local extrema of a function, use the second derivative test. A critical point of a single-variable function ff at a point cc is a local minimum if f(c)>0f''(c) > 0 and a local maximum if f(c)<0f''(c) < 0.


f(x)=x39x2+24x+7f(x)=x^{3} - 9 x^{2} + 24 x + 7 has critical points at: x=2x=4\begin{aligned}x &= 2\\x &= 4\end{aligned} Use the second derivative test on each critical point to determine if any of these points are local extrema.
Take the second derivative. f(x)=6(x3)f''(x) = 6 \left(x - 3\right)

Evaluate at x=2x = 2. f(x)=6(3+2)=6\begin{aligned}f''(x) &= 6 \left(-3 + 2\right) \\ &= -6\end{aligned}6<0-6 < 0 so x=2x=2 is a local maximum. Evaluate the function at x=2x = 2 to find the value of the maximum. f(2)=7+242922+23=27\begin{aligned}f\left(2\right)&=7 + 24 \cdot 2 - 9 \cdot 2^{2} + 2^{3} \\ &=27\end{aligned}f(x)f(x) has a local maximum 2727 at x=2x = 2.

Evaluate at x=4x = 4. f(x)=6(3+4)=6\begin{aligned}f''(x) &= 6 \left(-3 + 4\right) \\ &= 6\end{aligned}6>06 > 0 so x=4x=4 is a local minimum. Evaluate the function at x=4x = 4 to find the value of the minimum. f(4)=7+244942+43=23\begin{aligned}f(4)&=7 + 24 \cdot 4 - 9 \cdot 4^{2} + 4^{3} \\ &=23\end{aligned}f(x)f(x) has a local minimum 2323 at x=4x = 4.

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls