x - 3 = 2

x= -5B x = -1C x= 1D x=5

asked by guest
on Mar 28, 2025 at 5:28 pm



You asked:

Solve the system of equations:x3=2x=(5B)x=(1C)x=1Dx=5\begin{aligned}x - 3 &= 2\\x &= -\left( 5 B \right)\\x &= -\left( 1 C \right)\\x &= 1 D\\x &= 5\end{aligned}

MathBot Answer:

The system of equations has one solution.B=1B = -1 C=5C = -5 D=5D = 5 x=5x = 5


Solve by Gauss-Jordan Elimination:

Begin by writing the augmented matrix of the system of equations. [0001550010010100011000015]\begin{bmatrix}0 & 0 & 0 & 1 &\bigm |& 5\\5 & 0 & 0 & 1 &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & -1 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Then use a series of elementary row operations to convert the matrix into reduced-row echelon form. The three elementary row operations are:

  1. Swap the positions of any two rows.

  2. Multiply any row by a nonzero scalar.

  3. Multiply a row by a nonzero scalar and add it to any other row.


First, switch the rows in the matrix such that the row with the leftmost non-zero entry with the greatest magnitude is at the top.

[5001000015010100011000015]\begin{bmatrix}5 & 0 & 0 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & -1 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Multiply row 11 by scalar 15\frac{1}{5} to make the leading term 11.

[10015000015010100011000015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & -1 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Switch the rows in the matrix such that the row with the next leftmost non-zero entry with the next greatest magnitude is the next row from the top.

[10015001010000150011000015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & -1 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

The leading term of row 22 is already 11 so this row does not need to be multiplied by a scalar.

[10015001010000150011000015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & -1 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Switch the rows in the matrix such that the row with the next leftmost non-zero entry with the next greatest magnitude is the next row from the top.

[10015001010001100001500015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & -1 & 1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Multiply row 33 by scalar 1-1 to make the leading term 11.

[10015001010001100001500015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & 1 & -1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Switch the rows in the matrix such that the row with the next leftmost non-zero entry with the next greatest magnitude is the next row from the top.

[10015001010001100001500015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & 1 & -1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

The leading term of row 44 is already 11 so this row does not need to be multiplied by a scalar.

[10015001010001100001500015]\begin{bmatrix}1 & 0 & 0 & \frac{1}{5} &\bigm |& 0\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & 1 & -1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Multiply row 44 by scalar 15- \frac{1}{5} and add it to row 11.

[1000101010001100001500015]\begin{bmatrix}1 & 0 & 0 & 0 &\bigm |& -1\\0 & 1 & 0 & 1 &\bigm |& 0\\0 & 0 & 1 & -1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Multiply row 44 by scalar 1-1 and add it to row 22.

[1000101005001100001500015]\begin{bmatrix}1 & 0 & 0 & 0 &\bigm |& -1\\0 & 1 & 0 & 0 &\bigm |& -5\\0 & 0 & 1 & -1 &\bigm |& 0\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Multiply row 44 by scalar 11 and add it to row 33.

[1000101005001050001500015]\begin{bmatrix}1 & 0 & 0 & 0 &\bigm |& -1\\0 & 1 & 0 & 0 &\bigm |& -5\\0 & 0 & 1 & 0 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\end{bmatrix}

Multiply row 44 by scalar 1-1 and add it to row 55.

[1000101005001050001500000]\begin{bmatrix}1 & 0 & 0 & 0 &\bigm |& -1\\0 & 1 & 0 & 0 &\bigm |& -5\\0 & 0 & 1 & 0 &\bigm |& 5\\0 & 0 & 0 & 1 &\bigm |& 5\\0 & 0 & 0 & 0 &\bigm |& 0\end{bmatrix}

Once the matrix is in reduced-row echelon form, convert the matrix back into linear equations to find the solution. 1B+0C+0D+0x=1B=1\begin{aligned}1 \cdot B+ 0 \cdot C+ 0 \cdot D+ 0 \cdot x = -1 \\ B = -1\end{aligned}0B+1C+0D+0x=5C=5\begin{aligned}0 \cdot B+ 1 \cdot C+ 0 \cdot D+ 0 \cdot x = -5 \\ C = -5\end{aligned}0B+0C+1D+0x=5D=5\begin{aligned}0 \cdot B+ 0 \cdot C+ 1 \cdot D+ 0 \cdot x = 5 \\ D = 5\end{aligned}0B+0C+0D+1x=5x=5\begin{aligned}0 \cdot B+ 0 \cdot C+ 0 \cdot D+ 1 \cdot x = 5 \\ x = 5\end{aligned}0B+0C+0D+0x=0None=0\begin{aligned}0 \cdot B+ 0 \cdot C+ 0 \cdot D+ 0 \cdot x = 0 \\ None = 0\end{aligned}