2 $x^{4}$ - 9 $x^{3}$ + 15 $x^{2}$ +5x -21 = 0
You asked:
Solve the equation \(2 \cdot {x}^{4} - 9 \cdot {x}^{3} + 15 \cdot {x}^{2} + 5 x - 21 = 0\) for the variable \(x\).
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= -1\\x &= \frac{3}{2} = 1.5\\x &= 2 + \sqrt{3} i = 2 + 1.7320508 i\\x &= 2 - \sqrt{3} i = 2 -1.7320508 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).