$\frac{\SIN(A+B)+SIN(A-B)}{\COS(A+B)+COS(A-B)}$
You asked:
Evaluate the expression: \(\frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)} = \frac{\sin{\left(A - B \right)} + \sin{\left(A + B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}} \)
Expanded
\[\frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)} = \frac{\sin{\left(A - B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}} + \frac{\sin{\left(A + B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}}\]