$\frac{\SIN(A+B)+SIN(A-B)}{\COS(A+B)+COS(A-B)}$

asked by guest
on Nov 15, 2024 at 7:51 am



You asked:

Evaluate the expression: sin(A+B)+sin(AB)cos(A+B)+cos(AB)\frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)}

MathBot Answer:

Evaluated



sin(A+B)+sin(AB)cos(A+B)+cos(AB)=sin(AB)+sin(A+B)cos(AB)+cos(A+B)\displaystyle \frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)} = \frac{\sin{\left(A - B \right)} + \sin{\left(A + B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}}


Expanded

sin(A+B)+sin(AB)cos(A+B)+cos(AB)=sin(AB)cos(AB)+cos(A+B)+sin(A+B)cos(AB)+cos(A+B)\frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)} = \frac{\sin{\left(A - B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}} + \frac{\sin{\left(A + B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}}