$\frac{\SIN(A+B)+SIN(A-B)}{\COS(A+B)+COS(A-B)}$

asked by guest
on Nov 15, 2024 at 7:51 am



You asked:

Evaluate the expression: \(\frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)} = \frac{\sin{\left(A - B \right)} + \sin{\left(A + B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}} \)


Expanded

\[\frac{\sin\left( A + B \right) + \sin\left( A - B \right)}{\cos\left( A + B \right) + \cos\left( A - B \right)} = \frac{\sin{\left(A - B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}} + \frac{\sin{\left(A + B \right)}}{\cos{\left(A - B \right)} + \cos{\left(A + B \right)}}\]