√4x-3 -√2x-5 =2
You asked:
Solve the equation \(\sqrt{4} \cdot x - 3 - \sqrt{2} \cdot x - 5 = 2\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = 10 + 5 \sqrt{2} \approx 17.071068\]
\[\begin{aligned}\sqrt{4} \cdot x - 3 - \sqrt{2} \cdot x - 5 &= 2\\x \left(2 - \sqrt{2}\right) - 8 &= 2\\x \left(2 - \sqrt{2}\right) &= 10\\x &= \frac{10}{2 - \sqrt{2}}\end{aligned}\]