(2 sqrt(x)-5e^(-3x)+4secxtanx+3/x)dx
You asked:
MathBot Answer:
Evaluated
\(\displaystyle \left(2 \sqrt{x} - 5 {e}^{-\left( 3 x \right)} + 4 \sec\left( x \right) \tan\left( x \right) + \frac{3}{x}\right) \cdot d x = d x \left(2 \sqrt{x} + 4 \tan{\left(x \right)} \sec{\left(x \right)} - 5 e^{- 3 x} + \frac{3}{x}\right) \)
Expanded
\[\left(2 \sqrt{x} - 5 {e}^{-\left( 3 x \right)} + 4 \sec\left( x \right) \tan\left( x \right) + \frac{3}{x}\right) \cdot d x = 2 x^{\frac{3}{2}} d + 4 d x \tan{\left(x \right)} \sec{\left(x \right)} - 5 d x e^{- 3 x} + 3 d\]
Factored
\[\left(2 \sqrt{x} - 5 {e}^{-\left( 3 x \right)} + 4 \sec\left( x \right) \tan\left( x \right) + \frac{3}{x}\right) \cdot d x = d \left(2 x^{\frac{3}{2}} e^{3 x} + 4 x e^{3 x} \tan{\left(x \right)} \sec{\left(x \right)} - 5 x + 3 e^{3 x}\right) e^{- 3 x}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).