e^-28.05708

asked by guest
on Nov 27, 2024 at 7:01 pm



You asked:

Evaluate the expression: \({e}^{-28.05708}\)

MathBot Answer:

\[{e}^{-28.05708} = e^{- \frac{701427}{25000}} \approx 6.5307788510358380909 \cdot 10^{-13}\]


\[\begin{aligned}{e}^{-28.05708}& = e^{- \left(28 + \frac{5708}{100000}\right)}\\& = e^{- \left(28 + \frac{1427}{25000}\right)}\\& = e^{- \frac{701427}{25000}}\\& = \frac{1}{e^{\frac{701427}{25000}}}\\& = e^{- \frac{701427}{25000}}\end{aligned}\]


\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).