\int_{0}^{4}x\left(4-x\right)\sin\left(\frac{n\pi x}{4}\right)dx
You asked:
MathBot Answer:
Evaluated
\(\displaystyle \int_{0}^{4}{x \cdot \left(4 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{4} \right)}dx = \begin{cases} - \frac{64 \sin{\left(n \pi \right)}}{n^{2} \pi^{2}} - \frac{128 \cos{\left(n \pi \right)}}{n^{3} \pi^{3}} + \frac{128}{n^{3} \pi^{3}} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases} \)
Expanded
\[\int_{0}^{4}{x \cdot \left(4 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{4} \right)}dx = \int\limits_{0}^{4} \left(- x^{2} \sin{\left(\frac{n x \pi}{4} \right)}\right)\, dx + \int\limits_{0}^{4} 4 x \sin{\left(\frac{n x \pi}{4} \right)}\, dx\]
Factored
\[\int_{0}^{4}{x \cdot \left(4 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{4} \right)}dx = - \int\limits_{0}^{4} x \left(x - 4\right) \sin{\left(\frac{n x \pi}{4} \right)}\, dx\]