x^3 = 4

asked by guest
on Nov 16, 2024 at 2:39 am



You asked:

Solve the equation \({x}^{3} = 4\) for the variable \(x\).

MathBot Answer:

The solutions are given by the formula: \[x = 2^{\frac{2}{3}} \cos{\left(\frac{2 \pi k}{3} \right)} + 2^{\frac{2}{3}} \sin{\left(\frac{2 \pi k}{3} \right)} i\] where \(k\) is an integer in \(0 \le k < 3\).

There is \(1\) real solution.

There are \(2\) solutions with nonzero imaginary part.


Real solutions: \[\begin{aligned}x &= 2^{\frac{2}{3}} \\&\approx 1.5874011\end{aligned}\]


Solutions with nonzero imaginary part: \[\begin{aligned}x &= - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2} \\&\approx -0.79370053 + 1.3747296 i\\x &= - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2} \\&\approx -0.79370053 -1.3747296 i\end{aligned}\]


\(i\) is the imaginary unit, defined as \(i^2 = -1\).