sqrt(x^2 + 1)

asked by guest
on Nov 14, 2024 at 5:37 pm



You asked:

Evaluate the expression: \(\sqrt{{x}^{2} + 1}\)

MathBot Answer:

Evaluated



\(\displaystyle \sqrt{{x}^{2} + 1} = \sqrt{x^{2} + 1} \)


Roots

\[\sqrt{{x}^{2} + 1} = i \sqrt[4]{\left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1\right)^{2} + 4 \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)} + \sqrt[4]{\left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1\right)^{2} + 4 \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)} \approx 1.4142135623731 i \left(0.25 \left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1.0\right)^{2} + \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}\right)^{0.25} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)} + 1.4142135623731 \left(0.25 \left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1.0\right)^{2} + \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}\right)^{0.25} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)}\]\[\sqrt{{x}^{2} + 1} = i \left(- \sqrt[4]{\left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1\right)^{2} + 4 \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)}\right) - \sqrt[4]{\left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1\right)^{2} + 4 \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)} \approx - 1.4142135623731 i \left(0.25 \left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1.0\right)^{2} + \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}\right)^{0.25} \sin{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)} - 1.4142135623731 \left(0.25 \left(\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1.0\right)^{2} + \left(\operatorname{re}{\left(x\right)}\right)^{2} \left(\operatorname{im}{\left(x\right)}\right)^{2}\right)^{0.25} \cos{\left(\frac{\operatorname{atan_{2}}{\left(2 \operatorname{re}{\left(x\right)} \operatorname{im}{\left(x\right)},\left(\operatorname{re}{\left(x\right)}\right)^{2} - \left(\operatorname{im}{\left(x\right)}\right)^{2} + 1 \right)}}{2} \right)}\]