[8๐‘’(๐‘ฅ)โˆš(xหฃโบยน(๐‘ฅโˆ’1)!)-(๐‘ฅโˆ’8๐‘ฅยฒโˆ’4๐‘ฅln๐‘ฅโˆ’lnยฒ๐‘ฅโˆ’(4๐‘ฅ+2ln๐‘ฅ)ln2๐œ‹)]

asked by guest
on Nov 15, 2024 at 6:05 pm



You asked:

Evaluate the expression: 8โ‹…e(x)โ‹…xx+1โ‹…(xโˆ’1)!โˆ’(xโˆ’8x2โˆ’4xlnโก(x)โˆ’lnโก(x)2โˆ’(4x+2lnโก(x))โ‹…lnโก(2ฯ€))8 \cdot e\left( x \right) \cdot \sqrt{{x}^{x + 1} \cdot \left( x - 1 \right)!} - \left(x - 8 {x}^{2} - 4 x \ln\left( x \right) - {\ln\left( x \right)}^{2} - \left(4 x + 2 \ln\left( x \right)\right) \cdot \ln\left( 2 \pi \right)\right)

MathBot Answer:

Evaluated



8โ‹…e(x)โ‹…xx+1โ‹…(xโˆ’1)!โˆ’(xโˆ’8x2โˆ’4xlnโก(x)โˆ’lnโก(x)2โˆ’(4x+2lnโก(x))โ‹…lnโก(2ฯ€))=8x2+4xlogโก(x)โˆ’x+8xx+1(xโˆ’1)!e(x)+(4x+2logโก(x))logโก(2ฯ€)+logโก(x)2\displaystyle 8 \cdot e\left( x \right) \cdot \sqrt{{x}^{x + 1} \cdot \left( x - 1 \right)!} - \left(x - 8 {x}^{2} - 4 x \ln\left( x \right) - {\ln\left( x \right)}^{2} - \left(4 x + 2 \ln\left( x \right)\right) \cdot \ln\left( 2 \pi \right)\right) = 8 x^{2} + 4 x \log{\left(x \right)} - x + 8 \sqrt{x^{x + 1} \left(x - 1\right)!} e{\left(x \right)} + \left(4 x + 2 \log{\left(x \right)}\right) \log{\left(2 \pi \right)} + \log{\left(x \right)}^{2}


Expanded

8โ‹…e(x)โ‹…xx+1โ‹…(xโˆ’1)!โˆ’(xโˆ’8x2โˆ’4xlnโก(x)โˆ’lnโก(x)2โˆ’(4x+2lnโก(x))โ‹…lnโก(2ฯ€))=8x2+4xlogโก(x)โˆ’x+4xlogโก(2)+4xlogโก(ฯ€)+8xxx(xโˆ’1)!e(x)+logโก(x)2+2logโก(2)logโก(x)+2logโก(x)logโก(ฯ€)8 \cdot e\left( x \right) \cdot \sqrt{{x}^{x + 1} \cdot \left( x - 1 \right)!} - \left(x - 8 {x}^{2} - 4 x \ln\left( x \right) - {\ln\left( x \right)}^{2} - \left(4 x + 2 \ln\left( x \right)\right) \cdot \ln\left( 2 \pi \right)\right) = 8 x^{2} + 4 x \log{\left(x \right)} - x + 4 x \log{\left(2 \right)} + 4 x \log{\left(\pi \right)} + 8 \sqrt{x^{x} x \left(x - 1\right)!} e{\left(x \right)} + \log{\left(x \right)}^{2} + 2 \log{\left(2 \right)} \log{\left(x \right)} + 2 \log{\left(x \right)} \log{\left(\pi \right)}


Factored

8โ‹…e(x)โ‹…xx+1โ‹…(xโˆ’1)!โˆ’(xโˆ’8x2โˆ’4xlnโก(x)โˆ’lnโก(x)2โˆ’(4x+2lnโก(x))โ‹…lnโก(2ฯ€))=8x2+4xlogโก(x)โˆ’x+4xlogโก(2)+4xlogโก(ฯ€)+8xxx(xโˆ’1)!e(x)+logโก(x)2+2logโก(2)logโก(x)+2logโก(x)logโก(ฯ€)8 \cdot e\left( x \right) \cdot \sqrt{{x}^{x + 1} \cdot \left( x - 1 \right)!} - \left(x - 8 {x}^{2} - 4 x \ln\left( x \right) - {\ln\left( x \right)}^{2} - \left(4 x + 2 \ln\left( x \right)\right) \cdot \ln\left( 2 \pi \right)\right) = 8 x^{2} + 4 x \log{\left(x \right)} - x + 4 x \log{\left(2 \right)} + 4 x \log{\left(\pi \right)} + 8 \sqrt{x^{x} x \left(x - 1\right)!} e{\left(x \right)} + \log{\left(x \right)}^{2} + 2 \log{\left(2 \right)} \log{\left(x \right)} + 2 \log{\left(x \right)} \log{\left(\pi \right)}