((v/k)-r)-((v/k)-r)/2^1/2

asked by guest
on Jan 22, 2025 at 2:59 am



You asked:

Evaluate the expression: \(\frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2} = - \frac{3 r}{4} + \frac{3 v}{4 k} \)


Expanded

\[\frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2} = - \frac{3 r}{4} + \frac{3 v}{4 k}\]


Factored

\[\frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2} = - \frac{3 \left(k r - v\right)}{4 k}\]