((v/k)-r)-((v/k)-r)/2^1/2
You asked:
Evaluate the expression: \(\frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2} = - \frac{3 r}{4} + \frac{3 v}{4 k} \)
Expanded
\[\frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2} = - \frac{3 r}{4} + \frac{3 v}{4 k}\]
Factored
\[\frac{v}{k} - r - \frac{\frac{\frac{v}{k} - r}{{2}^{1}}}{2} = - \frac{3 \left(k r - v\right)}{4 k}\]