(1+3)+(5)1^2+(9)1-4+(2)1^2+13

asked by guest
on Nov 26, 2024 at 2:47 am



You asked:

Evaluate the expression: \(1 + 3 + 5 \cdot {1}^{2} + 9 \cdot 1 - 4 + 2 \cdot {1}^{2} + 13\)

MathBot Answer:

\[1 + 3 + 5 \cdot {1}^{2} + 9 \cdot 1 - 4 + 2 \cdot {1}^{2} + 13 = 29\]


\[\begin{aligned}1 + 3 + 5 \cdot {1}^{2} + 9 \cdot 1 - 4 + 2 \cdot {1}^{2} + 13& = 1 + 3 + 5 \cdot 1^{2} + 9 \cdot 1 - 4 + 2 \cdot 1^{2} + 13\\& = 1 + 3 + 5 \cdot 1 + 9 \cdot 1 - 4 + 2 \cdot 1^{2} + 13\\& = 1 + 3 + 5 + 9 \cdot 1 - 4 + 2 \cdot 1^{2} + 13\\& = 1 + 3 + 5 + 9 - 4 + 2 \cdot 1^{2} + 13\\& = 1 + 3 + 5 + 9 - 4 + 2 \cdot 1 + 13\\& = 1 + 3 + 5 + 9 - 4 + 2 + 13\\& = 4 + 5 + 9 - 4 + 2 + 13\\& = 9 + 9 - 4 + 2 + 13\\& = 18 - 4 + 2 + 13\\& = 14 + 2 + 13\\& = 16 + 13\\& = 29\end{aligned}\]