x^{3}+2xyz+yzw=0

x^{2}+y^{2}\left(z+w\right)+xyw=1

yzx+2yzw+w^{3}=-2

x^{2}z+xzw+yz^{2}+w^{2}z=-1

asked by guest
on Mar 25, 2025 at 9:47 pm



You asked:

Solve the system of equations:x3+2xyz+yzw=0x2+y2(z+w)+xyw=1yzx+2yzw+w3=2x2z+xzw+yz2+w2z=1\begin{aligned}{x}^{3} + 2 x y z + y z w &= 0\\{x}^{2} + {y}^{2} \left(z + w\right) + x y w &= 1\\y z x + 2 y z w + {w}^{3} &= -2\\{x}^{2} z + x z w + y {z}^{2} + {w}^{2} z &= -1\end{aligned}