x - y = 12

x*y= 11

x2x^{2} + y2y^{2} =

asked by guest
on Apr 10, 2025 at 1:04 am



MathBot Answer:

The system of equations has 22 solutions.

x=6+47,y=6+47x = 6 + \sqrt{47}, y = -6 + \sqrt{47}x=647,y=476x = 6 - \sqrt{47}, y = - \sqrt{47} - 6

By substituting these values into the expression, we find that: x2+y2=166\begin{aligned}x^{2} + y^{2} &= 166\end{aligned}


Solve xy=12x - y = 12 for xx. x=y+12x = y + 12Substitute y+12y + 12 for xx in xy=11x y = 11 and simplify. xy=11(y+12)y=11y2+12y=11y2+12y11=0y=(12)±(12)24(1)(11)2(12)y=6+47,y=476\begin{aligned}x y &= 11 \\ \left(y + 12\right) y &= 11 \\ y^{2} + 12 y &= 11 \\y^{2} + 12 y - 11 &= 0 \\ y &= \frac{-(12) \pm \sqrt{(12)^{2} - 4(1)(-11)}}{2(12)} \\ y = -6 + \sqrt{47}&, y = - \sqrt{47} - 6\end{aligned}Substitute 6+47-6 + \sqrt{47} into xy=12x - y = 12 to solve for xx. x47+6=12x+(647)=12x=6+47\begin{aligned}x - \sqrt{47} + 6 &= 12\\x + \left(6 - \sqrt{47}\right) &= 12\\x &= 6 + \sqrt{47}\end{aligned}This yields the following solution. x=6+47,y=6+47\begin{aligned}x = 6 + \sqrt{47},\,y = -6 + \sqrt{47}\end{aligned}Substitute 476- \sqrt{47} - 6 into xy=12x - y = 12 to solve for xx. x+6+47=12x+(6+47)=12x=647\begin{aligned}x + 6 + \sqrt{47} &= 12\\x + \left(6 + \sqrt{47}\right) &= 12\\x &= 6 - \sqrt{47}\end{aligned}This yields the following solution. x=647,y=476\begin{aligned}x = 6 - \sqrt{47},\,y = - \sqrt{47} - 6\end{aligned}

By substituting these values into the expression, we find that: x2+y2=166\begin{aligned}x^{2} + y^{2} &= 166\end{aligned}