$\sqrt{3i}$

asked by guest
on Jan 23, 2025 at 7:23 am



You asked:

Evaluate the expression: \(\sqrt{3 i}\)

MathBot Answer:

Evaluated



\(\displaystyle \sqrt{3 i} = \sqrt{3} \sqrt{i} \)


Roots

\[\sqrt{3 i} = - \frac{\sqrt{6}}{2} + - \frac{\sqrt{6}}{2} i \approx -1.22474487139159 - 1.22474487139159 i\]\[\sqrt{3 i} = \frac{\sqrt{6}}{2} + \frac{\sqrt{6}}{2} i \approx 1.22474487139159 + 1.22474487139159 i\]



\(i\) is the imaginary unit, defined as \(i^2 = -1\).