4564+4636

asked by guest
on Apr 07, 2025 at 1:04 am



You asked:

Evaluate the expression: 4564+46364564 + 4636

MathBot Answer:

4564+4636=9200 4564 + 4636=9200


4151614+046369200 \begin{aligned} \overset{\mathtt{1}}{\mathtt{4}}\overset{\mathtt{1}}{\mathtt{5}}\overset{\mathtt{1}}{\mathtt{6}}\mathtt{4}\\ \mathtt{+\phantom{0}}\mathtt{4}\mathtt{6}\mathtt{3}\mathtt{6}\\ \hline \mathtt{9}\mathtt{2}\mathtt{0}\mathtt{0} \end{aligned}

00 is the digit in the 10010^{0} place. 4×100+6×100=10×100=1×101+0×1004 \times 10^{0} + 6 \times 10^{0} = 10 \times 10^{0} = 1 \times 10^{1} + 0 \times 10^{0}.1×1011 \times 10^{1} carries to the 10110^{1} place.

00 is the digit in the 10110^{1} place. 1×101+6×101+3×101=10×101=1×102+0×1011 \times 10^{1} + 6 \times 10^{1} + 3 \times 10^{1} = 10 \times 10^{1} = 1 \times 10^{2} + 0 \times 10^{1}.1×1021 \times 10^{2} carries to the 10210^{2} place.

22 is the digit in the 10210^{2} place. 1×102+5×102+6×102=12×102=1×103+2×1021 \times 10^{2} + 5 \times 10^{2} + 6 \times 10^{2} = 12 \times 10^{2} = 1 \times 10^{3} + 2 \times 10^{2}.1×1031 \times 10^{3} carries to the 10310^{3} place.

99 is the digit in the 10310^{3} place. 1×103+4×103+4×103=9×1031 \times 10^{3} + 4 \times 10^{3} + 4 \times 10^{3} = 9 \times 10^{3} .