x/(x-1)(x^2+1)^2
asked by guest on Apr 04, 2025 at 8:52 am
You asked:
MathBot Answer:
x(x−1)(x2+1)2=x(x2+1)2(x−1)\displaystyle \frac{x}{\left(x - 1\right) {\left( {x}^{2} + 1 \right)}^{2}} = \frac{x}{\left(x^{2} + 1\right)^{2} \left(x - 1\right)} (x−1)(x2+1)2x=(x2+1)2(x−1)x
x(x−1)(x2+1)2=xx5−x4+2x3−2x2+x−1\frac{x}{\left(x - 1\right) {\left( {x}^{2} + 1 \right)}^{2}} = \frac{x}{x^{5} - x^{4} + 2 x^{3} - 2 x^{2} + x - 1}(x−1)(x2+1)2x=x5−x4+2x3−2x2+x−1x