(-0.05115303983-( -0.0951743988)) ^2+ (-0.1391957578- ( -0.0951743988)) ^2
You asked:
MathBot Answer:
\[{\left( -0.05115303983 - -0.0951743988 \right)}^{2} + {\left( -0.1391957578 - -0.0951743988 \right)}^{2} = \frac{38757600937724804609}{10000000000000000000000} = 0.0038757600937724804609\]
\[\begin{aligned}{\left( -0.05115303983 - -0.0951743988 \right)}^{2} + {\left( -0.1391957578 - -0.0951743988 \right)}^{2}& = \left(- \frac{5115303983}{100000000000} - - \frac{951743988}{10000000000}\right)^{2} + \left(- \frac{1391957578}{10000000000} - - \frac{951743988}{10000000000}\right)^{2}\\& = \left(- \frac{5115303983}{100000000000} - - \frac{237935997}{2500000000}\right)^{2} + \left(- \frac{1391957578}{10000000000} - - \frac{951743988}{10000000000}\right)^{2}\\& = \left(- \frac{5115303983}{100000000000} + \frac{237935997}{2500000000}\right)^{2} + \left(- \frac{1391957578}{10000000000} - - \frac{951743988}{10000000000}\right)^{2}\\& = \left(\frac{4402135897}{100000000000}\right)^{2} + \left(- \frac{1391957578}{10000000000} - - \frac{951743988}{10000000000}\right)^{2}\\& = \frac{19378800455655994609}{10000000000000000000000} + \left(- \frac{1391957578}{10000000000} - - \frac{951743988}{10000000000}\right)^{2}\\& = \frac{19378800455655994609}{10000000000000000000000} + \left(- \frac{695978789}{5000000000} - - \frac{951743988}{10000000000}\right)^{2}\\& = \frac{19378800455655994609}{10000000000000000000000} + \left(- \frac{695978789}{5000000000} - - \frac{237935997}{2500000000}\right)^{2}\\& = \frac{19378800455655994609}{10000000000000000000000} + \left(- \frac{695978789}{5000000000} + \frac{237935997}{2500000000}\right)^{2}\\& = \frac{19378800455655994609}{10000000000000000000000} + \left(- \frac{44021359}{1000000000}\right)^{2}\\& = \frac{19378800455655994609}{10000000000000000000000} + \frac{1937880048206881}{1000000000000000000}\\& = \frac{38757600937724804609}{10000000000000000000000}\end{aligned}\]